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In steady, two-dimensional, inviscid flows it is well-known that, in the absence of 
rotational forcing, the vorticity is constant along streamlines. In a bounded domain 
the streamlines are necessarily closed. In some circumstances, investigated in this 
paper, this behaviour is exhbited also by forced viscous flows, when the variation of 
vorticity across the streamlines is determined by a balance between viscous diffusion 
and the forcing. Similar results hold in axisymmetry. For such flows, an iterative 
process for finding the vorticity as a function of the stream function is described. The 
method applies whenever the viscous boundary condition can be expressed in terms 
of the vorticity or tangential stress rather then the tangential velocity. When it is 
applicable, the iterative method is faster than direct solution of the Navier-Stokes 
equations at high Reynolds numbers. As an example, the method is used to calculate 
the flow in a model of the electromagnetic stirring process. In this model, a 
conducting fluid in an elliptical region is driven by a rotating magnetic field and 
resisted by a surface stress. The functional dependence of the vorticity on the stream 
function is found for various values of the magnetic skin depth, surface stress and 
eccentricity of the ellipse. The form of the flow is discussed with particular reference 
to whether it consists of a single circulatory region or separates into two or more such 
regions. 

1. Introduction 
In  classical hydrodynamics fluid motion in a closed container can only be driven 

by prescribing a velocity or stress along the boundaries. Vorticity generated a t  the 
walls spreads into the interior in a manner totally under the control of the fluid. 
When a rotational body force acts, however, vorticity may be generated in the main 
body of the fluid, widening considerably the range of achievable flows. In this paper 
we investigate a particular class of these flows. 

We consider incompressible flow of a Newtonian fluid in a closed domain V 
bounded by a surface S under the influence of a prescribed rotational force field F(x). 
This force, which must be independent of the flow, may occur, for example, in low- 
Prandtl-number convection, when it is the buoyancy force due to a completely 
diffused temperature distribution (e.g. Busse & Clever 1981). Other examples include 
certain ocean models where a source of vorticity is prescribed (Read, Rhines & White 
1986), and many magnetohydrodynamic flows of conducting fluids a t  low magnetic 
Reynolds number. In this latter case, an example of which we consider in $5,  F i s  the 
Lorentz force per unit mass 
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POP 
F =  -(v A B) A B, (1.1) 
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where B is the magnetic field in the fluid, p0 the permeability and p the fluid 
density. This force is independent of the flow velocity u provided the induced e.m.f. 
due to  the fluid motion, u A B, is negligible. 

The flow is governed by the Navier-Stokes equations 

v . u  = 0, (1.2) 

-+V E t )  -+h2 = U  A w+F+vV'U,  

and associated vorticity equation 

(1.4) 
am - _  - V A (U A o ) + G + v V 2 0 .  
at 

In the above U, o, p ,  p and v are respectively the velocity, vorticity, pressure, density 
and kinematic viscosity of the fluid, while G = V A F is the source of vorticity due 
tlo the forcing. We shall suppose the flow to be such that the streamlines are closed. 
If we integrate (1.3) around a closed curve C which corresponds a t  time t = to to one 
such streamline, we obtain 

implying that the circulation around any streamline adjusts itself until a balance is 
reached between the forcing and the viscous drag. Let us now consider steady 
solutions a t  high Reynolds number. Formally, we set a/at  = 0 and then let v -f 0. For 
v large enough, we know from the general theory of the Navier-Stokes equations that 
a unique, stable steady solution will exist. As v + O ,  we shall assume that a t  least one 
steady solution continues to exist, though i t  may well lose its uniqueness and its 
stability. In this introduction we discuss the possible asymptotic forms of such a 
solution. We distinguish the following possibilities : 
(a) The velocity u may scale as l / v .  
( b )  The streamlines may align themselves so that $Fadl = 0 on every streamline. 
( c )  The lengths of the streamlines may increase without limit as 1 / v .  
( d )  Every streamline may pass through a singular region based on a small 

( e )  The flow may divide into two or more regions each governed by one of 

I n  this paper we shall be concerning ourselves mainly with case (a). When (a) 
holds, the forcing and viscous terms are locally of the same order of magnitude, while 
the inertial term is greater than either. A severe limitation on the applicability of 
case (a) is that the scaling u - l / v  does not permit the existence of a dissipative 
boundary layer of the sort normally associated with solid boundaries. For with this 
scaling, the rate of energy dissipation in the main body of the fluid is of the same 
order as the rate of working of the driving force. Thus the dissipation in any 
boundary layer cannot exceed that of the main flow. 

Case ( b )  is very special in that it permits the existence of a steady inviscid solution, 
with the forcing and inertia terms everywhere balancing. Such flows are very 
uncommon. Frequently, we can infer from the form of F and G that such a balance 
is impossible. Clearly, unless $F.df = 0 along a surface streamline, a condition not 
often satisfied in practice, case ( b )  is excluded. A further necessary condition for case 

lengthscale such as a viscous boundary layer. 

(af-(d). 
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FIGURE 1.  Distribution of G for a possible inviscid solution as in case (b). 

(b )  to occur in two-dimensional flow is that there should exist a curve, r, on which 
G = IGI = 0 and which divides the region of flow into two as in figure 1. The 
centre of circulation could then lie on this curve. These conditions are not sufficient, 
however, and in general flows driven by such functions G will split into two or more 
counter-circulating viscous regions (as, for example, does flow in a circular cylinder 
driven by an alternating, uniform magnetic field). Should circumstances be such that 
a flow of type ( b )  exists, then it will not be uniquely defined if the viscous terms are 
totally neglected. (Trivially, the transformation u + - u would then also define a 
solution, and there would be other degeneracies.) Subsidiary conditions obtained 
from the O(v)  corrections to the leading-order flow would be needed for uniqueness. 
Despite its rarity of occurrence, case ( b )  is the only one of the above cases tha t  
permits a steady asymptotic solution in which the velocity remains bounded. It is 
thus of interest when the shape of the boundary S is determined by a balance of 
normal stress, and is thus unable to support the dynamic pressures associated with 
large variations in the velocity. Such circumstances hold in the levitation melting 
process (Mestel 1982; Sneyd & Moffatt 1982). 

Case ( c )  is of particular interest when the flow under consideration is two- 
dimensional and unbounded in the third dimension. Davidson & Hunt (1987) 
describe how weak three-dimensionality in the driving force F can lead to secondary 
flows in the third-dimension on a lengthscale 1/v, thus explaining observed deep 
three-dimensional motions in the continuous casting process in steel manufacture. 
When the domain is bounded in the third dimension also, however, these deep 
motions pass through a boundary layer on the walls as in case ( d ) .  For case ( c )  to 
apply in a bounded domain, it is clear that as v+O each streamline must develop a 
structure based on a small lengthscale. In  three dimensions one cannot rule out the 
possibility of velocity variations on this lengthscale (as in case d ) ,  but this is unlikely 
since G is independent of v. A more common structure would have gradually 
spiralling streamlines similar to those of an O( 1) poloidal flow superposed on an O ( v )  
toroidal flow. Such flows can be represented by a flow whose streamlines close on the 
large lengthscale, with a small correction due to the sideways drift. 

A full analysis of the kind of boundary layer required in case ( d )  has yet to be done, 
although it is a very important case in practice. Most two-dimensional flows driven 
by a rotational force in a solid container will develop such a structure. There seems 
to be some evidence that the boundary-layer thickness scales as vi, with a jet-like 
velocity proportional to v-f (Fautrelle 1981 ; Mestel 1984; Sneyd 1979). Sneyd argues 
that such a boundary layer is likely to be unstable to perturbations akin to Taylor 
vortices, but it would nevertheless be of interest to understand the asymptotic 
behaviour. Many magnetohydrodynamic flows of this kind are in reality turbulent, 
but may be modelled reasonably well by steady, laminar solutions. 
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As for case ( e ) ,  it should be noted that each of the cases (a)-(d) involves a different 
scaling for the velocity and its scale of variation. Thus it would require some fairly 
delicate asymptotic matching for two such cases to exist simultaneously. Case ( a ) ,  for 
example, can only coexist with another case if the velocity vanishes on thc boundary 
of the region where ( a )  holds. 

Whichever of the above cases applies, the forcing and dissipation balance 
according to the streamline integrals 

$(P+ vV2u).dl = 0. (1.6) 

Physically, because the flow is steady and the streamlines are closed, the viscous 
term acts over a very long time and no matter how small it is, it must be balanced 
by the forcing. I n  case (a ) ,  with which we shall be concerned from now on, inertial 
forces are locally dominant, and (1.4) reduces to 

v A (U A 0 )  = 0. (1.7) 

Equations (1.6) and (1.7),  together with a suitable boundary condition on S ,  define 
the flow to lowest order in v. In  the next section we shall apply (1.6) and (1 .7)  to 
geometrically simple flows that are either two-dimensional or axisymmetric and 
poloidal. In  these cases we can derive an integrodifferential equation for the 
vorticity which we aim to solve iteratively. In  $ 3  we discuss the possible boundary 
conditions on S consistent with this formation. I n  $4 we describe the mechanics of 
the iterative process and the numerical alogorithms used. I n  9 5  and 6 we apply the 
method to the particular problem of rotating magnetic field around a conducting, 
elliptical cylinder. We conclude in $7.  

2. Two-dimensional and axisymmetric flows 
When the flow is either two-dimensional or axisymmetric and poloidal (without 

swirl) then for topological reasons the streamlines must be closed and (1.6) applies. 
We shall first consider the two-dimensional case. If we introduce a stream function 
$, where u = V A (0, 0, $(x, y)) in terms of Cartesian coordinates, then (1.7) reduces 
to 

where w is the magnitude of the vorticity o, implying a functional relation between 
w and $ 

u . v w  = 0, (2.1) 

0 = #($). (2.2) 

Thus 

and so (1.6) may be written 

where A($)  is the area enclosed by the streamline $ = constant, and G = IGI. 
This relation, together with 

w = - V 2 $  in V ;  $ = O  on S (2.5) 

and a suitable further boundary condition (e.g. w given on S) suffices to define the 
flow. Equation (2.4) has been given by many authors (e.g. Read et al. 1986). It has 
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a physical interpretation that the rate of increase of vorticity across a streamline is 
the ratio of the total source of vorticity to the total vorticity inside that streamline. 
In a companion paper (Mestel 1989) we found that instability is likely to occur when 
dw/d$ is large and positive, which we can interpret as an inadequate production of 
vorticity for a given strength of source. 

Similar results hold for poloidal axisymmetric flows. Equation (1.7) implies 

w 
- = Q(@) (2.6) r 

for some function Q, where $ ( r , z )  is now the Stokes stream function, so that 
u = V A (0, $ / r ,  0) in terms of cylindrical coordinates ( r ,  8 , ~ ) .  Then, following Jones, 
Moore & Weiss (1976), we have 

dQ 
v2u = -V A w = -r2-u-2252f, (2.7) 

d@ 
where f is a unit vector in the z-direction. Now the last term in (2.7) is constant along 

f 
a streamline and thus 

dQ - $F*d l  - J a G d A  
and so (1.6) implies - v$r2u.dl - vJA r3 Q dA 

since J A  a$/ardA = 0. Once again (2.9), together with 

D2$ = - r 2 Q ( ~ )  in V ;  $ = 0  

where D2 is the Stokes operator, 

define the flow subject to a suitable boundary condition 

on S (2.10) 

(2.11) 

on S. 
Batchelor’s (1956) results, that w and h are constant if F vanishes (or is 

conservative), follow directly from (2.4) and (2.9). However when G $I 0 these 
equations cannot be solved simply, as their right-hand sides depend on w and 52 in 
a complex manner. Nevertheless, we can envisage an iterative solution. If we regard 
$ as a known function of position then these right-hand sides involve integrals of 
known functions along known curves and can therefore be evaluated for each value 
of $. Equation (2.4) or (2.9) can then be integrated, subject to a suitable boundary 
condition, to find the vorticity distribution. The Poisson equation (2.5) or (2.10) can 
then be solved for this vorticity to find a new stream function and the process 
repeated. As each stage in this iteration involves integration we might expect it to 
converge. This method is discussed in detail in $4, but first we discuss the form of the 
required boundary condition. 

3. The boundary condition 
It is clear from the above sketch of a method of solution of (2.4) and (2.5) or the 

analagous (2.9) and (2.10) that we require a boundary condition for w (or Q) on S .  The 
simplest such condition, that w should be constant on S,  is uncommon physically. 
Normally we would expect either the velocity to be prescribed on S or that the 
normal velocity and the tangential stress should be given. We might very well expect 
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there to be a connection between the cases when either the surface vorticity or the 
tangential stress is prescribed, and we show below that this is indeed the case. First, 
however, we consider when a no-slip boundary gives an appropriate condition. 

If the velocity on S is prescribed, then we can use the relation 

l v w d A  = $suedl (3.1) 

as the required boundary condition for the iterative process. For if $ is regarded as 
a known function of position, then integrating (2.4) and substituting into (3.1) 
defines the requisite constant value, wo,  of the vorticity on S. However, this does not, 
in general, give the required solution. Instead of a flow satisfying a no-slip condition 
on 8, we shall obtain one that separates into two or more circulatory regions with 
oppositely signed vorticity, so that the total vorticity in V is zero. As we discussed 
in Q 1 ,  for flows with a solid boundary, the scaling u - l / w  is usually inappropriate. 
Instead, the streamlines pass through a boundary layer in order to ensure the balance 
(1.6) as in case (d )  of Q 1. However, there are special cases when a solution of this type 
does exist, when (3.1) will define a solution for a no-slip boundary. One such case is 
that of two-dimensional circular flow. When S is circular, then provided the force 
F(r,O) is such that its average wit,h respect to 8 does not vanish identically for every 
r ,  (1.6) and (1 .7)  will define a flow with circular streamlines. Because of its 8- 
independence, the velocity can vanish simultaneously everywhere on S .  Should the 
force F itself be independent of 8, then the circular flow will be a solution to the full 
Navier-Stokes equations. This case has been much studied as a model of 
electromagnetic stirring in the metallurgical industry (e.g. Moffatt 1965 ; Davidson 
& Hunt 1987). For non-circular shapes 8, only special force distributions F will give 
rise to a solution without a boundary layer as we require. It should be noted that 
these exceptional flows are much more energetic than those where the boundary 
offers severe resistance to the inertially dominated core flow. 

We have already observed in 5 1 and above that the scaling u - 1/v does not permit 
a dissipative boundary layer such as we would normally expect on a solid surface. 
However, there is no such objection to a weak boundary layer across which the 
velocity is continuous but the tangential stress changes. Such a boundary layer may 
be linearized and solved in terms of the surface velocity and coordinates local to S 
(e.g. Batchelor 1967). Thus in the two-dimensional case for example, if n and s are 
coordinates respectively normal and tangential to S ,  then the boundary-layer 
eauation for w(n.sj 

reduces to Von Mise’s equation 
aw a Z w  
- = vU(s)- 
as a v  (3.3) 

for w ( $ ,  s ) ,  where U(s)  is the surface velocity and @ = nU(s) .  The relation between 
vorticity and tangential stress per unit density, 7 ,  is 

7 = v[w-2K(s)Lq, (3.4) 

where K is the curvature of S, and so the boundary conditions for (3.3) are 

(3.5) 
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where wo is the appropriate (constant) value of the vorticity as the boundary layer 
matches onto the core flow. Now for the streamlines to be closed, w ,  must be periodic 
in s, and so from (3.3) 

Integrating (3.6) subject to (3.5) then gives 

(3.7) 

We have thus derived a boundary condition which we can use for the core flow 
defined by (2.4) and (2.5). 

We could also have derived (3.7) from considerations of energy balance. 
Integrating the scalar product of (1.3) with u we obtain the energy equation 

/ su- rdS+/vu-FdV= 2v IV eiieiidV, (3.8) 

where e.  = #h,/axj++uj/ax,) is the rate-of-strain tensor. Now we know that the 
energy dissipation within the boundary is negligible. Equation (3.8) should therefore 
apply whether the surface S is taken to be inside or outside the boundary layer. Thus 
Ju.7d8 does not vary across the boundary layer and (3.7) follows. 

Equation (3.7) defines an equivalent constant surface vorticity for any given stress 
distribution. With regard to our planned iterative approach we can see that a given 
velocity distribution a t  once defines a surface vorticity which will eventually produce 
a new velocity distribution. For this iteration process to  converge for any inital 
estimate of wo, it is clear that  we must require 

". 

f 2Kug ds < f uo ds, (3.9) 

where uo is the surface velocity due to unit vorticity in V.  (Otherwise an initially large 
estimate will grow larger.) The relation (3.9) is violated only when S is circular when 
equality holds. A moment's reflection reveals that this is only to be expected, as the 
problem is ill-posed in that case. Physically, the force F is providing a torque on the 
(circular) region Ti which will therefore spin up without limit unless the tangential 
stress T exactly balances it. The difference between the circular case and all others is 
that no distribution of normal stress on S can affect the balance of moments about 
the centre of the circle. For all other shapes, an appropriate normal stress guarantees 
global equilibrium and the existence of a solution. I n  the next section we describe in 
more detail the iterative method that calculates the flow whenever w or T is given on 
x. 

4. The iteration procedure 

the differences with axisymmetric flows towards the end. 
We shall concentrate on the two-dimensional case in this section, commenting on 

The equations to be solved are 

w = - V 2 $  in V ;  f i = O  on S, 

d o  $Fed1 - J G d A  
d @ -  -1- m' _ -  

w = B[w] on S,  (4.3) 



8 A .  J .  Mestel 

where B denotes some boundary condition which is in some sense attractive, so that 
repeated applications of (4.3) will converge. Normally B will either be a constant or 
the stress condition (3.7). 

We aim to use the method for an arbitrary domain V ,  and must decide how best 
to solve the Poisson equation (4.1) and to calculate the streamline integrals in (4.2). 
In fact it is convenient to exploit the two-dimensionality of the problem by using 
conformal transformations, although this is not an essential part of the method. 
If we transform from the region V in the Z-plane to the unit disc in the 2’-plane 
(2 = x + iy, Z’ = x’ + if) ,  then the Laplacian transforms according to 

where the Jacobian (4.5) 

Thus (4.1) transforms into 

V f 2 @ = - J ( r r , 8 ‘ ) w  in r ’ < l ;  @ = O  on r ’ = l ,  (4.6) 

where r’, 8’ are polar coordinates, while (4.2) becomes 

(4.7) 

The boundary condition (4.3) also transforms accordingly. We shall suppress the 
primes on the variables in what follows without ambiguity. This method of 
conformal transformation is often used in two-dimensional Navier-Stokes cal- 
culations as it leaves the vorticity equation unchanged in the absence of rotational 
forces (e.g. Tutty & Pedley 1989). It has the practical advantage that one can write 
a single routine using an accurate centred-difference schemc for which one need 
supply only the curl of the forcing, G ,  and the Jacobian, J .  This outweighs the 
disadvantage of having to find an appropriate conformal mapping whose Jacobian 
may vary appreciably over V. For our problem the method has an additional 
advantage in that it facilitates the solution of the Poisson equation (4.1). We can 
derive the Green function for (4.6) 

1 r2 + ri - 2rr, cos (8 - 8,) 
1 + r2ri - 2rr, cos (8 - 8,) 

satisfying V 2 H = 6 ( x - z , )  in r <  1,  H = O  on r =  1 (4.9) 

so that 
c 

We define a regular polar gird in the unit disc 

(4.10) 

(4.1 1 )  

We approximate the integral in (4.10) using the trapezium rule, except close to the 
singularity of the Green function where we perform the integration analytically to 
the same order. This defines a matrix M, dependent solely on the geometry, such 
that 

(4.12) 
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where the suffices to q9 and w denote values a t  the appropriate grid points. Starting 
from a vorticity distribution wkl ,  we choose a suitable number (N+) of values $(") 

between the minimum and maximum values of q9. Next we calculate the (r,  6)- 
coordinates of the intersections of the streamlines q9 = with the grid lines (as 
would a graphical contouring routine). The streamline integrals along these contours 
are then calculated and the new values w($(" ) )  found by Runge-Kutte integration of 
(4.7) with (4.3). The new vorticity distribution on the grid wkl = w(1crkl) is found 
by spline interpolation of these values. Finally, the new vorticity is tested for 
convergence and if necessary another iteration is performed. 

All that remains is to find G and J for the problem under consideration. Very often 
an explicit conformal mapping will be available for idealized problems, such as the 
one we consider in $85 and 6. If necessary, the transformation may be calculated 
numerically (Trefethen 1986). The scheme is second order in the steplengths, 
although some care should be taken near points where the Jacobian is large for 
maximum accuracy. 

A similar scheme can be used for axisymmetric problems. The main difference is 
that the conformal-mapping techniques are not available. Thus it is necessary to 
supply a suitable grid for a given problem and some other method must be used to 
solve the Poisson-like equation (2.10). One such method would be to use relaxation 
on the supplied grid (e.g. Mestel 1982). Otherwise the strategy for axisymmetric 
problems is the same as for two-dimensional ones. 

The method converges very rapidly, six iterations usually sufficing even for fine 
grids. It is noticeably faster than high-Reynolds-number NavierStokes calculations, 
although the latter are of course more versatile. The program was tested for accuracy 
against one of these, very kindly supplied and modified by Dr Tutty. His program 
solves the Navier-Stokes equations in a square, and so for comparison it was 
necessary to map the unit disc in the 2'-plane onto the square in the 2"-plane, using 
the transformation 

2 = -Sd ( K [ 3  2" I i), (4.13) 

where sd is an elliptic function and K[m] is the complete elliptic integral (Abramowitz 
& Stegun 1965). The comparison showed that the above scheme is indeed second 
order and was very useful as a debugging aid. The numerical results for the particular 
case discussed in the following section are presented in $6. 

1 

4 2  

5. Rotating magnetic field around a conducting ellipse 
We have already observed that a circular boundary gives rise to a singular case in 

which the inertial forces are exactly balanced by radial pressure gradients, and the 
form of the solution is the same for all Reynolds numbers. Sneyd (1979) calculated 
the perturbation to the flow when a no-slip circular boundary is perturbed slightly, 
and showed that that perturbation is indeed singular a t  high Reynolds number. For 
slippery boundaries, however, the effect of non-circularity is not as great. A natural 
generalization is to consider an elliptical boundary S 

-+L x2 1 
a2 b2 

parametrized by (2, y) = (a  cos 8, b sin 6) .  Such a shape covers the spectrum between 
the almost circular (a FZ b) and the almost one-dimensional (a  % b).  We shall use a 
non-dimensional lengthscale such that ab = 1.  
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We have seen that we shall require a conformal transformation for the interior of 
S onto the unit disc in the 2’-frame. Such a mapping is defined by 

2 = (a2 - b2)i  cash { ( 5 . 2 )  

and (5.3) 

where nd is an elliptic function whose parameter m and scale factor k are given 

K[m]k = 2 tanh-’ , (3 K [ l - m ] k  = t K ,  (5.4) 

whtm K [ m ]  once again is the complete elliptic integral (Abramowitz & Stegun 1965). 
The above transformation should not be confused with the more commonly known 
(5.16) which maps onto the exterior of the unit disc. Equation (5.2) may be used to  
define elliptic coordinates p and 8, where 6 = p + iO, so that 

x = (a2 - b2)i cosh p cos 8, y = (a2 - b2)i  sinhp sin 8. (5 .5)  

We consider now a problem of relevance to the continuous casting process for the 
manufacture of metals, wherein a gradually solidifying column of liquid metal is 
stirred by a rotating magnetic field. Analytical work on this probelm has assumed a 
circular cross-section, but such is rarely the case in practice. In  general, a numerical 
approach is required and in some circumstances the method described in $4 can be 
used. During solidification of such a column, a so-called ‘mushy zone’ forms around 
the solid-liquid interface. It has been suggested privately to the author that the 
effects of these dendritic regions on the interior circulating flow could be modelled 
using a resistive surface stress rather than a no-slip condition on the outer boundary. 
A suitable frictional relation would be 

vu 
L ’  

7 =-a- 

where U(s)  is the surface velocity, L is an appropriate lengthscale and a is a 
dimensionless constant. For such a model, the method described in this paper is 
applicable, as we describe below. 

A related metallurgical problem whose solution would be very similar occurs 
during electromagnetic shaping (Etay 1980 ; Shercliff 1981). Here, a suitable 
distribution of imposed alternating currents is used to distort the free surface of a 
liquid metal column into a desired shape. In  such a process, the fluid motion must 
be taken into account, as this affects the surface pressure distribution for moderate 
field frequencies. Thus, if (say) an elliptical cross-section were desired, it would be 
essential to be able to calculate the flow in an ellipse in order to  decide where to  
position the driving currents. The mathematics for fixed alternating fields is very 
similar to that for rotating fields, and so this problem could be solved in a very 
similar manner to that below. An important difference between the two cases is that 
for rotating fields, G is typically positive everywhere, whereas oscillating fields lead 
to forcing which has both positive and negative regions of G .  Thus, the former tends 
to drive flows with a single circulatory region, while the latter tends to drive two or 
more counter-circulating regions. 

The force on a conductor due to a rotating, initially uniform magnetic field 
requires some calculation, and in the remainder of this section we describe how it can 
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be found. If we let the field a t  infinity be Bo(cos ft, - sin f t ,  0) where f is the rotation 
frequency, and represent the magnetic field by 

B = Re [V A (0, 0, ~ e ’ f ~ ) ] ,  (5.7) 

where Re denotes the real part, then the flux function x satisfies 

outside V 
v2x = (iix/Sz inside V.  

Here the skin depth 8 > is defined by 

6 = &Ak, (5.9) 

where pa is the permeability and F the conductivity of the fluid. The boundary 
condition a t  infinity is then 

x - -iBiB,(z+iy). (5.10) 

The time-averaged curl of the Lorentz force per unit mass, G, may be found from 

1 
G = (0, 0, G )  = ___ Im[VX A Vx*] 

J2Pa P 
(5.11) 

where Im denotes the imaginary part and * the complex conjugate. 

(5.51, 
Inside the elliptic domain V, (5.8) becomes, in terms of the elliptical coordinates of 

a Z x  a Z x  o outside V 
i3p2 M2 (a2-  b2)(cosh2p-cos20)i~/S2 inside V ,  
-+-= ( (5.12) 

and could be solved for any 6 in terms of Mathieu functions, but these are somewhat 
cumbersome to use. Instead we find asymptotic solutions for S small and large, which 
are sufficiently accurate to match up. For S large (the low-frequency approximation) 
we find a series solution of (5.12) in powers of 1/a2. The leading-order term is just that 
due to a uniform rotating field 

(5.13) 

and is constant over V (this holds for any region V) .  Higher-order terms may be found 
by straightforward perturbation methods applied to (5.12) and (5.10). We obtain the 
expansion 

co 1 2k+l 

x = Bo C - C (A,,, cosh m p  cos n0 + Bmnk sinh m p  sin n0), (5.14) 
k = o  S2km,n  = 1 

odd 

where the coefficients Amnk and Bmnk are linear multiples of Am,(,-l) and Bmncr-l,, 
This series is easily evaluated numerically giving accurate results for S larger than 
about 0.5 (for alb < 2). BeIow this value the series appears to diverge, although this 
may be a truncation effect. Pad$ approximant techniques increase the range of 
validity of the series down to S z 0.2, but below this value it is more sensible to use 
a high-frequency, or ‘skin-depth ’ approximation. 

For 6 small, it is well known that the magnetic field is confined to a skin layer of 
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FIGURE 2. Equally spaced contours of G for a magnetic field rotating anticlockwise, 
alb = 2, 6 = 0.25. 

X 

thickness S near the surface S .  In terms of the normal distance n from the surface S ,  
parametrized by 8,  it can be shown that inside V as S+O 

(5.15) 

where B, is the tangential field that would result were the fluid a perfect conductor 
and excluded B totally, while K is the curvature of S .  The result (5.15) has not been 
published before to the author’s knowledge. Usually the less accurate approximation 
in which the square root in the denominator is omitted has been used (e.g. Mestel 
1984). The derivation of (5.15) including the 0(S2)-term will be published elsewhere 
along with a description of the behaviour near the involute of S ,  where n = 1/K 
(Mestel 1988). 

The surface field B, may be calculated by potential theory. The exterior of the 
ellipse may be mapped onto the exterior of the unit circle in the 2’-plane by 

a+b a - b l  z=-- z + - -  
2 2 2’‘ 

B,(a + b)ei8 
(V cos2 e + a2 sin2 0);‘ 

The solution is then found to be 

B, = 

(5.16j 

(5.17) 

We use (5.11), (5.17) and (5.15) (including the next-order term for greater accuracy) 
to provide an expression for G with a relative error of O(S2). This is sufficient to match 
onto the low-frequency estimate found from (5.14) with a manageable error. 

Usually for flows of this type the form of C gives greater insight than does .F, part 
of which is merely cancelled by the pressure gradient. Here we observe that G is 
always positive, is symmetric about the origin but is not symmetric about either of 
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the axes. The conductor resists the rotation of the field lines, leading to a 
concentration of gradient after the bulging major axes, as in figure 2. There, the 
contours of G are plotted for 6 = 0.25 and a = l / b  = 4 2  between its maximum of 
about 11 on the surface and its minimum of about 1.35 in the interior. This minimum 
occurs surprisingly close to the surface, with a saddle point a t  the centre of the 
ellipse. For S large, G is small and uniform, as given by (5.13). It increases in 
magnitude as S decreases through 1 past which i t  becomes localized in the skin layer. 
As S+O, i t  drives less and less circulation, the velocity u being proportional to 6. In  
this limit, the electromagnetic force as a surface stress (Mestel 1982; Moffatt 1984) 
as illustrated by the numerical results of the next section. In  this context it is 
important to note that the two limits v+ 0 and S+O may not be interchangeable, 
especially if dealing with solid boundaries. 

6. Numerical results 
The method outlined in $4 was used to  solve the problem described in $5 using the 

transformation and forcing defined there. The velocity was non-dimensionalized so 
that effectively 

B2 

POP 
o= 1. (6.1) 

Except for small values of the skin depth S which require high resolution, the mesh 
sizes used were N, = 20, NB = 96, and N+ = 20. Solutions for w and $ were obtained 
for various values of 6, alb,  and the boundary condition on S. In figure 3, w is drawn 
as a function of $ for a stress-free ellipse with a/b  = 2. Solutions are shown for 
various values of the skin depth 6, those on the right corresponding to S large, while 
those on the left to S small. When S is large G is approximately constant, as given by 
(5.13), and both w and $ scale as 1/S2. As 6 decreases, the net circulation increases 
(as measured by $.,,,, the maximum value of $ attained) reaching a maximum a t  
about S =  0.275. The existence of this maximum is a common feature of 
electromagnetic stirring problems. As S decreases, from this value, G becomes 
confined to the skin layer. Thus, fewer and fewer streamlines feel its effect, and the 
vorticity tends to a constant in the interior, but varies sharply over the skin layer. 
This constant, w,, can be calculated in terms of the tangential field B, of (5.15) by 
considerations of energy balance (as in Mestel 1982 for the axisymmetric case). 
The straight dotted line on the left of figure 3 shows the asymptotic behaviour of 
(@,(a), 

Figure 4 shows a ( w ,  $)-plot for a = l / b  = 1.1 and S = 0.1, with w taking a variety 
of values w,, on the boundary. As we discuss in the contiguous paper on stability 
(Mestel 1989), for w,, large and of either sign, the flow consists of a single circulatory 
region in the same sense as oo. The direction of circulation changes over a range of 
values of wo, the flow becoming unstable during this transition. A total flow reversal 
of the type shown to  be unstable in that paper, would be represented in the figure by 
an infinite gradient of the curve w = w ( $ ) ,  a t  the point corresponding to the 
streamline on which u vanishes. Should a curve w = w ( $ )  pass through regions of 
both positive and negative @, then the corresponding flow would have regions of both 
clockwise and anticlockwise circulation. For S = 0.1, the range of values of w,, over 
which the direction of circulation changes is fairly narrow (-0.1 < wo < -0.25). 
This is because the force I; approximates to its asymptotic state of a tangential 
surface stress, when only values of wo that  correspond in (3.7) to an equal and 
opposite stress lead to irregular behaviour. (Otherwise the flow is simply being driven 

as S+O which agrees well with the numerics. 
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FIUURE 3. w(tlr) for a = l / b  = 2/2, a stress-free surface and various 6. Left: 6 = 0.05, 0.01, 0.15, 

0.2, 0.25, 0.275. Right: 6 = 0.275, 0.3, 0.4, 0.5, 0.6, 0.8, 1 ,  2. 

3 
FIGURE 4. w ( $ )  for a = l / b  = 1.1, 6 = 0.1 and various w,,. w,, = - 1 ,  -0.75, -0.5, -0.4, -0.3, 

-0.25, -0.1, 0,  0.25; 0.5. 
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by an appropriate surface stress). Near the opposite limit, however, when S is large 
and G is distributed evenly over V ,  the corresponding range is greater. The 
localization of the force near the surface may thus be thought of as inhibiting 
separation and instability of the flow. The solutions plotted in the figure are for 
values close to this range. The steepening of the gradients as flow reversal is 
approached (with consequent likelihood of instability) is marked. Another feature of 
note is the almost linear relationship of the central values of w and II/ (the endpoints 
of the curves). 

FIGURE 5 .  Streamlines for a rotating magnetic field about an ellipse. (a)  a = l / b  = 2/2, 6 = 0.1, 
stress-free surface, no separation. ( b )  a = l / b  = 1.1, 6+ CO, oo = -0.2125/6'. Separation has just 
occurred a t  ends of the major axis. 



16 A .  J .  Mestel 

The streamline patterns for these flows tend to be similar in appearance and 
relatively uninformative. Two cases are drawn in figure 5 .  For figure 5 ( a )  a l b  = 2, 
6 = 0.1 and the surface S is stress-free. For this low value of 6 ,  the vorticity is almost 
constant in the interior of the ellipse, with correspondingly nearly elliptical 
streamlines. The flow speed, tts manifest in the distance between strcamlines, is fairly 
uniform across most of the ellipse, decelerating near the ends of the major axis as one 
would expect. In  figure 5 ( b ) ,  however, a more revealing flow is shown for a = l / b  = 
1.1 in the limit of S large, with a surface stress acting in opposition to the motion. The 
magnitude of this stress and the corresponding constant surface vorticity value have 
been chosen so that separation has just begun near the ends of the major axis. 
Physically, it comes as no surprise that separation begins near the point of maximum 
curvature. The velocity is much smaller on the surface than in the main body of fluid, 
but does not vanish everywhere on S simultaneously as would be required by a solid 
boundary. 

While it is of theoretical interest to consider all values of w,,, it is clearly important 
to keep in mind which values are physically likely in any particular problem. Because 
of its frictional form, the surface stress given by (5.6) can never drive a flow which 
is everywhere in the opposite sense to G .  However for large values of the friction 
coefficient a (greater than the critical value on figure S b ) ,  the flow can separate off 
from the wall forming small regions where the circulation is opposed to G. In the 
context of continuous casting, this can lead to inhomogeneities in the solidified 
product near the surface stagnation points, increasing thc likelihood of crack 
formation. As the metal solidifics, it tends to solidify fastest in the regions of 
maximum surface cwrvature. As a result, the departures from circularity of the liquid 
core diminish, as does the likelihood of separation. 

7. Concluding remarks 
In  this paper we have described a fast method for calculating steady, forced, high- 

Reynolds-number flows in two dimensions or axisymmetry. In  these geometries the 
vorticity has a functional dependence on the strcamfunction which we calculate 
iteratively. The method may be used inside any region upon whose boundary either 
the vorticity or the tangential stress is prescribed. I t  does not, however, apply in 
general inside slip-free boundaries, when the boundary layer is energetically 
dominant. As we saw in $3, the weak boundary layer associated with a jump in stress 
(such as that on a free surface) can be incorporated into the theory. It leads to an 
O(v)-correction to the core flow, and thus the results obtained by neglecting it should 
be reasonably accurate even for modcrate Reynolds numbers. I n  such a boundary 
layer the vorticity is not constant on streamlines and so the flow cannot be 
represented by an (w,  $)-plot as in figure 3. 

It is not necessary for the function w ( @ )  to be single-valued for the method to be 
applicable, but this simplifies the process. When it is not, and likewise when the flow 
consists of two or more disconnected circulatory regions, a modicum of numerical 
care is required to ensure correct representation of the flow. We see from the curves 
on the right of figure 3 that in some circumstances the function w(@)  is not only 
monotonic but indeed nearly linear. This suggests that those flows may be 
approximated by a linear equation (4.1), with obvious advantages (e.g. Jones et aE. 
1976). One would expect this approximation to be a good one when there is no 
localization forced upon the flow, that is when the forcing is slowly varying inside a 
smooth, stress-free surface S.  
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The'method may be applied to a variety of magnetohydrodynamic problems such 
as the shaping, stirring or levitation of liquid metals. It is particularly well suited for 
many of these problems, when the free-surface shape S is not known a priori and 
must itself be determined by some iterative technique, with which the method we 
have described can be merged. Other applications include low-Prandtl-number 
convection and various oceanographic models. In  all these cases, the forcing is 
independent of the velocity field. However, there is no reason in principle why the 
iterative procedure should not be used even when the forcing does vary with the flow. 
How iiseful the method is in that case naturally depends on the ease with which the 
forcing for a given flow may be calculated. This greatly widens the scope of possible 
applications. Any inertially dominated flow problem may be approached using this 
technique, provided the energy dissipation occurs in the main body of the fluid rather 
than in some boundary layer. 

It is shown in the contiguous paper on stability (Mestel 1989) that the function 
w ( $ )  and in particular its derivative are of great significance in determining the 
stability of the flow. The iterative method, which directly obtains w ( $ ) ,  is thus well- 
suited for use in conjunction with the stability analysis of that paper. We find there 
is a correlation, if not a correspondence, between those flows deemed unstable by the 
criteria of that paper, and those flows for which the iterative method we have 
described here behaves delicately. That is to say, for stable flows the method 
converges rapidly for any initial condition, while for ones close to instability it 
requires a close initial estimate. This is of course not surprising, as iteration towards 
a steady state involves processing perturbations about that state, which we might 
expect to grow if the basic flow is unstable. 

While on the subject of stability, it is worth noting that many of the two- 
dimensional flows we have been studying may be unstable to three-dimensional 
disturbances. In particular, Bayly (1987) has shown that elliptical Euler flows with 
constant vorticity are unstable. Now the flows we have been considering (e.g. in 
figure 5 )  are of this type very close to their central stagnation points. It is not clear 
whether the effects of viscosity and rotational forcing may be neglected over the 
appropriate lengthscale, but if this is the case, such flows will be unstable unless they 
are locally circular. 

In  conclusion, I would like to repeat my thanks to Dr Owen Tutty for his help in 
supplying the reliable Navier-Stokes code against which the method described in this 
paper was tested. I am also grateful to a referee for some helpful comments. 
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